Histological Assessment of Endochondral Ossification and Bone Mineralization

Author:

Hasegawa Tomoka1ORCID,Hongo Hiromi1,Yamamoto Tomomaya12,Muneyama Takafumi1,Miyamoto Yukina1,Amizuka Norio1ORCID

Affiliation:

1. Developmental Biology of Hard Tissue, Faculty of Medicine, Hokkaido University, Sapporo 060-8586, Japan

2. Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo 005-8543, Japan

Abstract

Finely tuned cartilage mineralization, endochondral ossification, and normal bone formation are necessary for normal bone growth. Hypertrophic chondrocytes in the epiphyseal cartilage secrete matrix vesicles, which are small extracellular vesicles initiating mineralization, into the intercolumnar septa but not the transverse partitions of the cartilage columns. Bone-specific blood vessels invade the unmineralized transverse septum, exposing the mineralized cartilage cores. Many osteoblast precursors migrate to the cartilage cores, where they synthesize abundant bone matrices, and mineralize them in a process of matrix vesicle-mediated bone mineralization. Matrix vesicle-mediated mineralization concentrates calcium (Ca) and inorganic phosphates (Pi), which are converted into hydroxyapatite crystals. These crystals grow radially and are eventually get out of the vesicles to form spherical mineralized nodules, leading to collagen mineralization. The influx of Ca and Pi into the matrix vesicle is regulated by several enzymes and transporters such as TNAP, ENPP1, PiT1, PHOSPHO1, annexins, and others. Such matrix vesicle-mediated mineralization is regulated by osteoblastic activities, synchronizing the synthesis of organic bone material. However, osteocytes reportedly regulate peripheral mineralization, e.g., osteocytic osteolysis. The interplay between cartilage mineralization and vascular invasion during endochondral ossification, as well as that of osteoblasts and osteocytes for normal mineralization, appears to be crucial for normal bone growth.

Funder

Japanese Society for the Promotion of Science

Uehara Memorial Foundation

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3