Indirect Force Control of a Cable-Driven Parallel Robot: Tension Estimation using Artificial Neural Network trained by Force Sensor Measurements

Author:

Piao Jinlong,Kim Eui-Sun,Choi Hongseok,Moon Chang-Bae,Choi Eunpyo,Park Jong-Oh,Kim Chang-SeiORCID

Abstract

In a cable-driven parallel robot (CDPR), force sensors are utilized at each winch motor to measure the cable tension in order to obtain the force distribution at the robot end-effector. However, because of the effects of friction in the pulleys and the unmodeled cable properties of the robot, the measured cable tensions are often inaccurate, which causes force-control difficulties. To overcome this issue, this paper presents an artificial neural network (ANN)-based indirect end-effector force-estimation method, and its application to CDPR force control. The pulley friction and other unmodeled effects are considered as black-box uncertainties, and the tension at the end-effector is estimated by compensating for these uncertainties using an ANN that is developed using the training datasets from CDPR experiments. The estimated cable tensions at the end-effector are used to design a P-controller to track the desired force. The performance of the proposed ANN model is verified through comparisons with the forces measured directly at the end-effector. Furthermore, cable force control is implemented based on the compensated tensions to evaluate the performance of the CDPR in wrench space. The experimental results show that the proposed friction-compensation method is suitable for application in CDPRs to control the cable force.

Funder

National Research Foundation of Korea (NRF)

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3