Intelligent Localization Sampling System Based on Deep Learning and Image Processing Technology

Author:

Yi Shengxian,Yang Zhongjiong,Zhou Liqiang,Zou Shaoxin,Xie Huangxin

Abstract

In this paper, deep learning and image processing technologies are combined, and an automatic sampling robot is proposed that can completely replace the manual method in the three-dimensional space when used for the autonomous location of sampling points. It can also achieve good localization accuracy, which solves the problems of the high labor intensity, low efficiency, and poor scientific accuracy of the manual sampling of mineral powder. To improve localization accuracy and eliminate non-linear image distortion due to wide-angle lenses, distortion correction was applied to the captured images. We solved the problem of low detection accuracy in some scenes of Single Shot MultiBox Detector (SSD) through data augmentation. A visual localization model has been established, and the image coordinates of the sampling point have been determined through color screening, image segmentation, and connected body feature screening, while coordinate conversion has been performed to complete the spatial localization of the sampling point, guiding the robot in performing accurate sampling. Field experiments were conducted to validate the intelligent sampling robot, which showed that the maximum visual positioning error of the robot is 36 mm in the x-direction and 24 mm in the y-direction, both of which meet the error range of less than or equal to 50 mm, and could meet the technical standards and requirements of industrial sampling localization accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monitoring consumption of calcium hydroxide via a new approach;Materials Today Communications;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3