Eventual Increase in Solar Electricity Production and Desalinated Water through the Formation of a Channel between the Mediterranean and the Dead Sea

Author:

Lineykin Simon1ORCID,Sharma Abhishek2ORCID,Averbukh Moshe3ORCID

Affiliation:

1. Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 40700, Israel

2. Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248002, India

3. Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israel

Abstract

Currently, the Israeli energy industry faces the challenge of a considerable increase in solar electricity production. As a relatively isolated system, the significant expansion of solar electricity may cause problems with electricity quality. Electrical storage installation can resolve this problem. In Israel’s situation, the optimal solution could be the creation of a channel between the Mediterranean and the Dead Sea. The channel can solve three closely related problems: the increased production of desalinated water for domestic, industrial, and agricultural needs; the prevention of a permanent Dead Sea level decline and its imminent disappearance; the development of hydro-pumping electrical storage stations; and the creation of numerous PV facilities in the Negev area for national electricity generation. However, detailed analysis should be conducted for the estimation of the possible increase in solar electric generation with consideration of a stochastic PV outcome and the potential ability to use the Dead Sea for the brine discharge of electrical hydro-storage plants.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3