Natural Gas Demand Forecasting Model Based on LASSO and Polynomial Models and Its Application: A Case Study of China

Author:

Liu Huanying1,Liu Yulin1,Wang Changhao1,Song Yanling2,Jiang Wei1ORCID,Li Cuicui1,Zhang Shouxin1,Hong Bingyuan13ORCID

Affiliation:

1. National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China

2. College of Information and Engineering, Zhejiang Ocean University, Zhoushan 316022, China

3. National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, China

Abstract

China aims to reduce carbon dioxide emissions and achieve peak carbon and carbon neutrality goals. Natural gas, as a high-quality fossil fuel energy, is an important transition resource for China in the process of carbon reduction, so it is necessary to predict China’s natural gas demand. In this paper, a novel natural gas demand combination forecasting model is constructed to accurately predict the future natural gas demand. The Lasso model and the polynomial model are used to build a combinatorial model, which overcomes the shortcomings of traditional models, which have low data dimensions and poor prediction abilities. In the modeling process, the cross-validation method is used to adjust the modeling parameters. By comparing the performance of the combinatorial forecasting model, the single forecasting model and other commonly used forecasting models, the results show that the error (2.99%) of the combinatorial forecasting model is the smallest, which verifies the high accuracy and good stability advantages of the combinatorial forecasting model. Finally, the paper analyzes the relevant data from 1999 to 2022 and predicts China’s natural gas demand in the next 10 years. The results show that the annual growth rate of China’s natural gas demand in the next 10 years will reach 13.33%, at 8.3 × 1011 m3 in 2033, which proves that China urgently needs to rapidly develop the gas supply capacity of gas supply enterprises. This study integrates the impact of multiple factors on the natural gas demand, predicts China’s natural gas demand from 2023 to 2033, and provides decision-making support for China’s energy structure adjustment and natural gas import trade.

Funder

National College Students Innovation and Entrepreneurship Training Program of Zhejiang Ocean University

Zhoushan Science and Technology Project

Basic Public Welfare Research Program of Zhejiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3