Blockchain-Based Services Implemented in a Microservices Architecture Using a Trusted Platform Module Applied to Electric Vehicle Charging Stations

Author:

Cabrera-Gutiérrez Antonio J.12ORCID,Castillo Encarnación2ORCID,Escobar-Molero Antonio1ORCID,Cruz-Cozar Juan12ORCID,Morales Diego P.2ORCID,Parrilla Luis2ORCID

Affiliation:

1. Infineon Technologies AG, Am Campeon 1–15, 85579 Neubiberg, Germany

2. Department of Electronics and Computer Technology, University of Granada, Avda. de Fuente Nueva s/n, 18071 Granada, Spain

Abstract

Microservice architectures exploit container-based virtualized services, which rarely use hardware-based cryptography. A trusted platform module (TPM) offers a hardware root for trust in services that makes use of cryptographic operations. The virtualization of this hardware module offers high usability for other types of service that require TPM functionalities. This paper proposes the design of TPM virtualization in a container. To ensure integrity, different mechanisms, such as attestation and sealing, have been developed for the binaries and libraries stored in the container volumes. Through a REST API, the container offers the functionalities of a TPM, such as key generation and signing. To prevent unauthorized access to the container, this article proposes an authentication mechanism based on tokens issued by the Cognito Amazon Web Service. As a proof of concept and applicability in industry, a use case for electric vehicle charging stations using a microservice-based architecture is proposed. Using the EOS.IO blockchain to maintain a copy of the data, the virtualized TPM microservice provides the cryptographic operations necessary for blockchain transactions. Through a two-factor authentication mechanism, users can access the data. This scenario shows the potential of using blockchain technologies in microservice-based architectures, where microservices such as the virtualized TPM fill a security gap in these architectures.

Funder

Bundesministeriums für Wirtschaft und Energie

European Health and Digital Executive Agency

FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3