Study on CO2 Huff-n-Puff Development Rule of Horizontal Wells in Heavy Oil Reservoir by Taking Liuguanzhuang Oilfield in Dagang as an Example

Author:

Xu Zhenhua1,Zhou Lianwu2,Ma Shuiping2,Qin Jianxun2,Huang Xiaodi2,Han Bo2,Yang Longqing2,Luo Yun2,Liu Pengcheng1ORCID

Affiliation:

1. School of Energy Resources, China University of Geosciences, Beijing 100083, China

2. The 2nd Oil Production Plant, Dagang Oilfield Company, PetroChina, Huanghua 061103, China

Abstract

Heavy oil reservoirs are often characterized by high viscosity and poor mobility, which is more complex with the presence of bottom water. The conventional vertical well development method has low oil recovery efficiency and limited controlled reserves of a single well. In addition, water cut can increase dramatically when the edge-bottom water breaks through. Horizontal well and CO2 huff-n-puff is an effective alternative development model for heavy oil reservoirs. This development method makes efficient use of CO2 and accords with the “Carbon Capture, Utilization, and Storage (CCUS)”. The horizontal well can increase the drainage area. The dissolution of CO2 improves the mobility of crude oil and increases formation energy. In this paper, we established numerical simulation models based on the Liuguanzhuang oilfield in Dagang. The characteristics and producing rules of the horizontal well and CO2 huff-n-puff development in the heavy oil reservoir were studied. The results show that the production characteristics of horizontal well and CO2 huff-n-puff were similar to Steam-Assisted Gravity Drainage (SAGD). CO2 forms a viscosity reduction area above the horizontal well and the heavy oil flows into the wellbore due to gravity after viscosity reduction. The CO2 huff-n-puff can effectively enhance the production area of horizontal wells compared with the depletion development. However, the improvement in the production area gradually decreased as CO2 huff-n-puff cycles continued. There was a boundary of production area against the horizontal well, with the main production of heavy oil occurring at the upper and either end of the horizontal well. The CO2 huff-n-puff has a restraining effect on the edge-bottom water, which is confirmed via the proposed theoretical model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3