Semi-Supervised SAR ATR Framework with Transductive Auxiliary Segmentation

Author:

Wang Chenwei,Liu Xiaoyu,Huang YulinORCID,Luo Siyi,Pei JifangORCID,Yang JianyuORCID,Mao Deqing

Abstract

Convolutional neural networks (CNNs) have achieved high performance in synthetic aperture radar (SAR) automatic target recognition (ATR). However, the performance of CNNs depends heavily on a large amount of training data. The insufficiency of labeled training SAR images limits the recognition performance and even invalidates some ATR methods. Furthermore, under few labeled training data, many existing CNNs are even ineffective. To address these challenges, we propose a Semi-supervised SAR ATR Framework with transductive Auxiliary Segmentation (SFAS). The proposed framework focuses on exploiting the transductive generalization on available unlabeled samples with an auxiliary loss serving as a regularizer. Through auxiliary segmentation of unlabeled SAR samples and information residue loss (IRL) in training, the framework can employ the proposed training loop process and gradually exploit the information compilation of recognition and segmentation to construct a helpful inductive bias and achieve high performance. Experiments conducted on the MSTAR dataset have shown the effectiveness of our proposed SFAS for few-shot learning. The recognition performance of 94.18% can be achieved under 20 training samples in each class with simultaneous accurate segmentation results. Facing variances of EOCs, the recognition ratios are higher than 88.00% when 10 training samples each class.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3