Auto-Weighted Structured Graph-Based Regression Method for Heterogeneous Change Detection

Author:

Zhao Lingjun,Sun YuliORCID,Lei Lin,Zhang Siqian

Abstract

Change detection using heterogeneous remote sensing images is an increasingly interesting and very challenging topic. To make the heterogeneous images comparable, some graph-based methods have been proposed, which first construct a graph for the image to capture the structure information and then use the graph to obtain the structural changes between images. Nonetheless, previous graph-based change detection approaches are insufficient in representing and exploiting the image structure. To address these issues, in this paper, we propose an auto-weighted structured graph (AWSG)-based regression method for heterogeneous change detection, which mainly consists of two processes: learning the AWSG to capture the image structure and using the AWSG to perform structure regression to detect changes. In the graph learning process, a self-conducted weighting strategy is employed to make the graph more robust, and the local and global structure information are combined to make the graph more informative. In the structure regression process, we transform one image to the domain of the other image by using the learned AWSG, where the high-order neighbor information hidden in the graph is exploited to obtain a better regression image and change image. Experimental results and comparisons on four real datasets with seven state-of-the-art methods demonstrate the effectiveness of the proposed approach.

Funder

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CIBENet: A channel interaction and bridging-enhanced change detection network for optical and SAR remote sensing images;International Journal of Applied Earth Observation and Geoinformation;2024-07

2. Rethinking Building Change Detection: Dual-Frequency Learnable Visual Encoder With Multiscale Integration Network;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. A Triple-Branch Hybrid Attention Network With Bitemporal Feature Joint Refinement for Remote-Sensing Image Semantic Change Detection;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Change Detection With Cross-Domain Remote Sensing Images: A Systematic Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

5. Exploiting Variational Inequalities for Generalized Change Detection on Graphs;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3