Multi-Feature Information Complementary Detector: A High-Precision Object Detection Model for Remote Sensing Images

Author:

Wang Jiaqi,Gong Zhihui,Liu Xiangyun,Guo Haitao,Lu Jun,Yu DonghangORCID,Lin Yuzhun

Abstract

Remote sensing for image object detection has numerous important applications. However, complex backgrounds and large object-scale differences pose considerable challenges in the detection task. To overcome these issues, we proposed a one-stage remote sensing image object detection model: a multi-feature information complementary detector (MFICDet). This detector contains a positive and negative feature guidance module (PNFG) and a global feature information complementary module (GFIC). Specifically, the PNFG is used to refine features that are beneficial for object detection and explore the noisy features in a complex background of abstract features. The proportion of beneficial features in the feature information stream is increased by suppressing noisy features. The GFIC uses pooling to compress the deep abstract features and improve the model’s ability to resist feature displacement and rotation. The pooling operation has the disadvantage of losing detailed feature information; thus, dilated convolution is introduced for feature complementation. Dilated convolution increases the receptive field of the model while maintaining an unchanged spatial resolution. This can improve the ability of the model to recognize long-distance dependent information and establish spatial location relationships between features. The detector proposed also improves the detection performance of objects at different scales in the same image using a dual multi-scale feature fusion strategy. Finally, classification and regression tasks are decoupled in space using a decoupled head. We experimented on the DIOR and NWPU VHR-10 datasets to demonstrate that the newly proposed MFICDet achieves competitive performance compared to current state-of-the-art detectors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. Deep learning for processing and analysis of remote sensing big data: a technical review

2. Rich feature hierarchies for accurate object detection and semantic segmentation;Girshick;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014

3. Faster R-CNN: Towards real-time object detection with region proposal networks;Ren;Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015),2015

4. You only look once: Unified, real-time object detection;Redmon;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016

5. Ssd: Single shot multibox detector;Liu,2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3