Fine-Grained Classification of Optical Remote Sensing Ship Images Based on Deep Convolution Neural Network

Author:

Chen YantongORCID,Zhang Zhongling,Chen Zekun,Zhang Yanyan,Wang Junsheng

Abstract

Marine activities occupy an important position in human society. The accurate classification of ships is an effective monitoring method. However, traditional image classification has the problem of low classification accuracy, and the corresponding ship dataset also has the problem of long-tail distribution. Aimed at solving these problems, this paper proposes a fine-grained classification method of optical remote sensing ship images based on deep convolution neural network. We use three-level images to extract three-level features for classification. The first-level image is the original image as an auxiliary. The specific position of the ship in the original image is located by the gradient-weighted class activation mapping. The target-level image as the second-level image is obtained by threshold processing the class activation map. The third-level image is the midship position image extracted from the target image. Then we add self-calibrated convolutions to the feature extraction network to enrich the output features. Finally, the class imbalance is solved by reweighting the class-balanced loss function. Experimental results show that we can achieve accuracies of 92.81%, 93.54% and 93.97%, respectively, after applying the proposed method on different datasets. Compared with other classification methods, this method has a higher accuracy in optical aerospace remote sensing ship classification.

Funder

the National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. A New Benchmark and an Attribute-Guided Multilevel Feature Representation Network for Fine-Grained Ship Classification in Optical Remote Sensing Images

2. Ship detection and recognitionin high-resolution satellite images;Antelo;Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2009

3. A comb feature for the analysis of ship classification in high resolution SAR imagery;Leng;Proceedings of the 2016 CIE International Conference on Radar (RADAR),2016

4. Pattern Recognition for Ship Based on Bayesian Networks;Wang;Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007),2007

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3