Validation of Remote-Sensing Algorithms for Diffuse Attenuation of Downward Irradiance Using BGC-Argo Floats

Author:

Begouen Demeaux CharlotteORCID,Boss EmmanuelORCID

Abstract

Estimates of the diffuse attenuation coefficient (Kd) at two different wavelengths and band-integrated (PAR) were obtained using different published algorithms developed for open ocean waters spanning in type from explicit-empirical, semi-analytical and implicit-empirical and applied to data from spectral radiometers on board six different satellites (MODIS-Aqua, MODIS-Terra, VIIRS–SNPP, VIIRS-JPSS, OLCI-Sentinel 3A and OLCI-Sentinel 3B). The resultant Kds were compared to those inferred from measurements of radiometry from sensors on board autonomous profiling floats (BGC-Argo). Advantages of BGC-Argo measurements compared to ship-based ones include: 1. uniform sampling in time throughout the year, 2. large spatial coverage, and 3. lack of shading by platform. Over 5000 quality-controlled matchups between Kds derived from float and from satellite sensors were found with values ranging from 0.01 to 0.67 m−1. Our results show that although all three algorithm types provided similarly ranging values of Kd to those of the floats, for most sensors, a given algorithm produced statistically different Kd distributions from the two others. Algorithm results diverged the most for low Kd (clearest waters). Algorithm biases were traced to the limitations of the datasets the algorithms were developed and trained with, as well as the neglect of sun angle in some algorithms. This study highlights: 1. the importance of using comprehensive field-based datasets (such as BGC-Argo) for algorithm development, 2. the limitation of using radiative-transfer model simulations only for algorithm development, and 3. the potential for improvement if sun angle is taken into account explicitly to improve empirical Kd algorithms. Recent augmentation of profiling floats with hyper-spectral radiometers should be encouraged as they will provide additional constraints to develop algorithms for upcoming missions such as NASA’s PACE and SBG and ESA’s CHIME, all of which will include a hyper-spectral radiometer.

Funder

NASA Ocean Biology and Biogeochemistry

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3