An MT-InSAR Data Partition Strategy for Sentinel-1A/B TOPS Data

Author:

Wang Yuexin,Feng Guangcai,Feng Zhixiong,Wang Yuedong,Wang Xiuhua,Luo Shuran,Zhao Yinggang,Lu Hao

Abstract

The Sentinel-1A/B satellite launched by European Space Agency (ESA) in 2014 provides a huge amount of free Terrain Observation by Progressive Scans (TOPS) data with global coverage to the public. The TOPS data have a frame width of 250 km and have been widely used in surface deformation monitoring. However, traditional Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) methods require large computer memory and time when processing full resolution data with large width and long strips. In addition, they hardly correct atmospheric delays and orbital errors accurately over a large area. In order to solve these problems, this study proposes a data partition strategy based on MT-InSAR methods. We first process the partitioned images over a large area by traditional MT-InSAR method, then stitch the deformation results into a complete deformation result by correcting the offsets of adjacent partitioned images. This strategy is validated in a flat urban area (Changzhou City in Jiangsu province, China), and a mountainous region (Qijiang in Chongqing City, China). Compared with traditional MT-InSAR methods, the precision of the results obtained by the new strategy is improved by about 5% for Changzhou city and about 15% for Qijiang because of its advantage in atmospheric delay correction. Furthermore, the proposed strategy needs much less memory and time than traditional methods. The total time needed by the traditional method is about 20 h, and by the proposed method, is about 8.7 h, when the number of parallel processing is 5 in the Changzhou city case. The time will be further reduced when the number of parallel processes increases.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities of Central South University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3