Automatic Matching of Multimodal Remote Sensing Images via Learned Unstructured Road Feature

Author:

Yu Kun,Xu Chengcheng,Ma Jie,Fang Bin,Ding Junfeng,Xu Xinghua,Bao Xianqiang,Qiu Shaohua

Abstract

Automatic matching of multimodal remote sensing images remains a vital yet challenging task, particularly for remote sensing and computer vision applications. Most traditional methods mainly focus on key point detection and description of the original image, thus ignoring the deep semantic feature information such as semantic road features, with the result that the traditional method can not effectively resist nonlinear grayscale distortion, and has low matching efficiency and poor accuracy. Motivated by this, this paper proposes a novel automatic matching method named LURF via learned unstructured road features for the multimodal images. There are four main contributions in LURF. To begin with, the semantic road features were extracted from multimodal images based on segmentation model CRESIv2. Next, based on semantic road features, a stable and reliable intersection point detector has been proposed to detect unstructured key points. Moreover, a local entropy descriptor has been designed to describe key points with the local skeleton feature. Finally, a global optimization strategy is adopted to achieve the correct matching. The extensive experimental results demonstrate that the proposed LURF outperforms other state-of-the-art methods in terms of both accuracy and efficiency on different multimodal image data sets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3