Abstract
Water-use efficiency (WUE) is not only an important indicator to connect the carbon and water cycles of a terrestrial ecosystem, but also a key parameter for an ecosystem to respond to climate change. It is crucial for understanding the mechanism of regional ecosystem response to environmental change by researching the influences of vegetation and climate change on WUE variation and revealing its drivers. Based on trend analysis, grey relational analysis, and ridge-regression analysis, this study analyzed the spatiotemporal variation characteristics of WUE in Inner Mongolia (IM) from 2001 to 2018 and determined the dominant influencing factors of WUE variation. The results showed that the annual mean WUE in IM was 1.39 g C m−2 mm−1 and it generally presented a rising trend, with an increasing rate of 0.0071 g C m−2 mm−1 yr−1. Leaf-area index (LAI) and precipitation were the most important factors influencing WUE in IM, followed by relative humidity and wind speed. Temperature, water vapor pressure and sunshine duration slightly influenced WUE and they were relatively less important. According to the ridge-regression analysis, LAI, precipitation and relative humidity had a positive contribution to WUE variation, while the wind speed had a negative contribution. Regionally, LAI was the dominant cause of WUE variation. The contribution and relative contribution rate of LAI to WUE variation were 0.008 g C m−2 mm−1 yr−1 and 44.57%, which were significantly higher than those of precipitation, relative humidity, and sunshine duration. Thus, vegetation primarily dominated WUE variability during the study period. The relative contribution rate of LAI varied across the different vegetation types and ranged from 25.26% in swamps to 51.29% in meadows. Our results improve the understanding of the effects of driving factors on WUE, which can help policymakers with water resource management and ecological restoration.
Funder
National Natural Science Foundation of China
The Second Tibetan Plateau Scientific Expedition and Research Program
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献