Deep Learning-Based Water Quality Retrieval in an Impounded Lake Using Landsat 8 Imagery: An Application in Dongping Lake

Author:

Zhang Hanwen,Xue Baolin,Wang GuoqiangORCID,Zhang XiaojingORCID,Zhang Qingzhu

Abstract

Attempts have been made to incorporate remote sensing techniques and in situ observations for enhanced water quality assessments. Estimations of nonoptical indicators sensitive to water environment changes, however, have not been fully studied, mainly due to complex nonlinear relationships between the observed values and surface reflectance. In this study, we applied a novel deep learning approach driven by a range of spectral properties to retrieve 6-year changes in water quality variables, i.e., Chl-a, BOD, TN, CODMn, NH3-N, and TP, on a monthly basis between 2013 and 2018 at Dongping Lake, an impounded lake located in the Yellow River in China. Band arithmetic was used to compute 26 predictors from Landsat 8 OLI imagery for model inputs. The results showed generally strong agreement between in situ and ConvLSTM-derived lake variables, generating R2 of 0.92, 0.88, 0.84, 0.80, 0.83, and 0.77 for TN, NH3-N, CODMn, Chl-a, TP, and BOD, which suggest good performance of the developed model. We then used statistical analysis to identify the spatial and temporal heterogeneity. The framework established in this study has applications in effective water quality monitoring and serves as an alarming tool for water-environment management in the complex inland lake waters.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3