A Comparison of Various Algorithms for Classification of Food Scents Measured with an Ion Mobility Spectrometry

Author:

Minaev GeorgyORCID,Müller PhilippORCID,Salminen KatriORCID,Rantala JussiORCID,Surakka VeikkoORCID,Visa AriORCID

Abstract

The present aim was to compare the accuracy of several algorithms in classifying data collected from food scent samples. Measurements using an electronic nose (eNose) can be used for classification of different scents. An eNose was used to measure scent samples from seven food scent sources, both from an open plate and a sealed jar. The k-Nearest Neighbour (k-NN) classifier provides reasonable accuracy under certain conditions and uses traditionally the Euclidean distance for measuring the similarity of samples. Therefore, it was used as a baseline distance metric for the k-NN in this paper. Its classification accuracy was compared with the accuracies of the k-NN with 66 alternative distance metrics. In addition, 18 other classifiers were tested with raw eNose data. For each classifier various parameter settings were tried and compared. Overall, 304 different classifier variations were tested, which differed from each other in at least one parameter value. The results showed that Quadratic Discriminant Analysis, MLPClassifier, C-Support Vector Classification (SVC), and several different single hidden layer Neural Networks yielded lower misclassification rates applied to the raw data than k-NN with Euclidean distance. Both MLP Classifiers and SVC yielded misclassification rates of less than 3% when applied to raw data. Furthermore, when applied both to the raw data and the data preprocessed by principal component analysis that explained at least 95% or 99% of the total variance in the raw data, Quadratic Discriminant Analysis outperformed the other classifiers. The findings of this study can be used for further algorithm development. They can also be used, for example, to improve the estimation of storage times of fruit.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3