Students’ Learning Behaviour in Programming Education Analysis: Insights from Entropy and Community Detection

Author:

Mai Tai Tan12ORCID,Crane Martin12ORCID,Bezbradica Marija12ORCID

Affiliation:

1. School of Computing, Dublin City University, Collins Ave Ext, Whitehall, D09 Y074 Dublin, Ireland

2. ADAPT Center for Digital Content Technology, D02 PN40 Dublin, Ireland

Abstract

The high dropout rates in programming courses emphasise the need for monitoring and understanding student engagement, enabling early interventions. This activity can be supported by insights into students’ learning behaviours and their relationship with academic performance, derived from student learning log data in learning management systems. However, the high dimensionality of such data, along with their numerous features, pose challenges to their analysis and interpretability. In this study, we introduce entropy-based metrics as a novel manner to represent students’ learning behaviours. Employing these metrics, in conjunction with a proven community detection method, we undertake an analysis of learning behaviours across higher- and lower-performing student communities. Furthermore, we examine the impact of the COVID-19 pandemic on these behaviours. The study is grounded in the analysis of empirical data from 391 Software Engineering students over three academic years. Our findings reveal that students in higher-performing communities typically tend to have lower volatility in entropy values and reach stable learning states earlier than their lower-performing counterparts. Importantly, this study provides evidence of the use of entropy as a simple yet insightful metric for educators to monitor study progress, enhance understanding of student engagement, and enable timely interventions.

Funder

Science Foundation Ireland under Grant Agreement

Dr Stephen Blott, School of Computing, Dublin City University

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimedia learning analytics feedback in simulation-based training: A brief review;Proceedings of the 1st ACM Workshop on AI-Powered Q&A Systems for Multimedia;2024-06-10

2. Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods;Physica A: Statistical Mechanics and its Applications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3