CSN5A Subunit of COP9 Signalosome Temporally Buffers Response to Heat in Arabidopsis

Author:

Singh Amit KumarORCID,Yadav Brijesh SinghORCID,Dhanapal Shanmuhapreya,Berliner Mark,Finkelshtein Alin,Chamovitz Daniel A.ORCID

Abstract

The COP9 (constitutive photomorphogenesis 9) signalosome (CSN) is an evolutionarily conserved protein complex which regulates various growth and developmental processes. However, the role of CSN during environmental stress is largely unknown. Using Arabidopsis as model organism, we used CSN hypomorphic mutants to study the role of the CSN in plant responses to environmental stress and found that heat stress specifically enhanced the growth of csn5a-1 but not the growth of other hypomorphic photomorphogenesis mutants tested. Following heat stress, csn5a-1 exhibits an increase in cell size, ploidy, photosynthetic activity, and number of lateral roots and an upregulation of genes connected to the auxin response. Immunoblot analysis revealed an increase in deneddylation of CUL1 but not CUL3 following heat stress in csn5a-1, implicating improved CUL1 activity as a basis for the improved growth of csn5a-1 following heat stress. Studies using DR5::N7-VENUS and DII-VENUS reporter constructs confirm that the heat-induced growth is due to an increase in auxin signaling. Our results indicate that CSN5A has a specific role in deneddylation of CUL1 and that CSN5A is required for the recovery of AUX/IAA repressor levels following recurrent heat stress to regulate auxin homeostasis in Arabidopsis.

Funder

Israel science foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3