Retinoic Acid Signaling Is Associated with Cell Proliferation, Muscle Cell Dedifferentiation, and Overall Rudiment Size during Intestinal Regeneration in the Sea Cucumber, Holothuria glaberrima

Author:

Viera-Vera Jorge,García-Arrarás José E.

Abstract

Almost every organism has the ability of repairing damaged tissues or replacing lost and worn out body parts, nevertheless the degree of the response substantially differs between each species. Adult sea cucumbers from the Holothuria glaberrima species can eviscerate various organs and the intestinal system is the first one to regenerate. This process involves the formation of a blastema-like structure that derives from the torn mesentery edges by the intervention of specific cellular processes (e.g., cell dedifferentiation and division). Still, the genetic networks controlling the regenerative response in this model system are just starting to be unraveled. In this work we examined if and how the retinoic acid (RA) signaling pathway is involved in the regenerative response of this deuterostome. We first identified and characterized the holothurian orthologs for short chain dehydrogenase/reductase 7 (SDR7) and aldehyde dehydrogenase family 8A1 (ALDH8A1), two enzymes respectively associated with retinaldehyde and RA anabolism. We then showed that the SDR7 transcript was differentially expressed during specific stages of intestinal regeneration while ALDH8A1 did not show significant differences in regenerating tissues when compared to those of normal (non-eviscerated) organisms. Finally, we investigated the consequences of modulating RA signaling during intestinal regeneration using pharmacological tools. We showed that application of an inhibitor (citral) of the enzyme synthesizing RA or a retinoic acid receptor (RAR) antagonist (LE135) resulted in organisms with a significantly smaller intestinal rudiment when compared to those treated with DMSO (vehicle). The two inhibitors caused a reduction in cell division and cell dedifferentiation in the new regenerate when compared to organisms treated with DMSO. Results of treatment with tazarotene (an RAR agonist) were not significantly different from the control. Taken together, these results suggest that the RA signaling pathway is regulating the cellular processes that are crucial for intestinal regeneration to occur. Thus, RA might be playing a role in echinoderm regeneration that is similar to what has been described in other animal systems.

Funder

Foundation for the National Institutes of Health

National Science Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3