Ex-Ante Prediction of Disruptive Innovation: The Case of Battery Technologies

Author:

Müller Julian MariusORCID,Kunderer Raphael

Abstract

Battery technologies represent a highly relevant field that is undergoing conversions in the context of, for instance, battery electric vehicles or stationary power storage for renewable energies. Currently, lithium-ion batteries represent the predominant technology that has, however, a considerable environmental impact that could hinder the emergence of sustainable energy systems. Driven by these conversions, several authors claim that potentially disruptive technologies could occur. The concept of disruptive innovation has been highly regarded in research and practice, but has only been successfully regarded from an ex-post perspective. However, without the possibility to establish ex-ante predictions of disruptive innovation, several authors disregard the concept of having significant relevance for practice. In response to this research gap, the present paper attempts to establish an ex-ante prediction of potential disruptive innovation. The method is based on the disruption hazard model by Sood and Tellis, testing seven hypotheses regarding a potential disruption hazard of redox-flow batteries towards lithium-ion batteries. The paper finds that redox-flow batteries could represent a disruptive technology, but this evaluation is limited to an expert evaluation. The authors discuss this finding, as the technical characteristics of redox-flow batteries support its role as a potential disruptive innovation, concluding with implications, limitations as well as suggestions for future research.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3