Research on Ship Collision Probability Model Based on Monte Carlo Simulation and Bi-LSTM

Author:

Vukša SrđanORCID,Vidan Pero,Bukljaš Mihaela,Pavić Stjepan

Abstract

The efficiency and safety of maritime traffic in a given area can be measured by analyzing traffic density and ship collision probability. Maritime traffic density is the number of ships passing through a given area in a given period of time. It can be measured using vessel tracking systems, such as the Automatic Identification System (AIS). The information provided by AIS is real-time data designed to improve maritime safety. However, the AIS data can also be used for scientific research purposes to improve maritime safety by developing predictive models for collisions in a research area. This article proposes a ship collision probability estimation model based on Monte Carlo simulation (MC) and bidirectional long short-term memory neural network (Bi-LSTM) for the maritime region of Split. The proposed model includes the processing of AIS data, the verification of AIS data, the determination of ports and ship routes, MC and the collision probability, the Bi-LSTM learning process based on MC, the ship collision probability for new or existing routes, and the traffic density. The results of MC, i.e., traffic/vessel route and density, and collision probability for the study area can be used for Bi-LSTM training with the aim of estimating ship collision probability. This article presents the first part of research that includes MC in detail, followed by a preliminary result based on one day of processed AIS data used to simulate MC and propose a model architecture that implements Bi-LSTM for ship collision probability estimation.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and application of ship traffic conflicts in nearshore waters with heavy traffic;Ocean Engineering;2024-01

2. Collision Risk Assessment and Forecasting on Maritime Data;Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems;2023-11-13

3. Ship Collision Risk Assessment;Journal of Marine Science and Engineering;2023-07-03

4. Monte Carlo Simulation Approach to Shipping Accidents Consequences Assessment;Water;2023-05-10

5. Image Dataset for Neural Network Performance Estimation with Application to Maritime Ports;Journal of Marine Science and Engineering;2023-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3