Waste Heat Source Profiles for Marine Application of Organic Rankine Cycle

Author:

Ng Chunwee,Tam Ivan C. K.ORCID,Wetenhall Ben

Abstract

The maritime industry will continue to see increasing regulatory requirements to reduce carbon emissions from ships’ operations. Improving the energy efficiency of ships with waste heat recovery systems based on the organic Rankine cycle (ORC) is an attractive way to meet these tightening requirements. The operational profile of a ship has a huge influence on the feasibility of installing ORC onboard as it affects the waste heat source profile from the diesel engines. However, to date, scant attention has been paid to examining the effects that the operational profile has on the marine application of ORC as it is both difficult and expensive to obtain. The present paper aims to describe a methodology that can overcome this problem by developing a generic ship speed profile that defines the ship’s operational profile. This speed profile works together with a fit-for-purpose diesel engine waste heat model to derive a waste heat source profile that is used as the input to a thermoeconomic analysis that can justify the installation of ORC. The proposed methodology allows for an objective comparison of the feasibility of ORC subjected to variations in the operational profile. Furthermore, the optimum ORC design can be identified to meet payback time expectations of different shipowners.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3