The Black Sea Zooplankton Mortality, Decomposition, and Sedimentation Measurements Using Vital Dye and Short-Term Sediment Traps

Author:

Litvinyuk DariaORCID,Mukhanov Vladimir,Evstigneev VladislavORCID

Abstract

The principal objectives of this research are to measure the non-consumptive mortality rate of marine copepod zooplankton and the sedimentation rate of copepod carcasses, using short-term sediment traps, and to reveal a correlation between the rates of the two competitive processes—sedimentation and degradation of the carcasses under turbulent mixing conditions. The traps were moored in Sevastopol Bay and adjacent coastal waters (the Black Sea) during summer and autumn seasons. A simulation model was developed to describe a wide range of processes in the trap and the water column above it and to interpret the results obtained with the sediment traps. Significant changes in the abundance of copepod carcasses (from 280 to 12,443 ind. m−3) and their fraction in the total zooplankton abundance (53 to 81%) were observed in the waters over short time periods, indicating a high variability of zooplankton mortality, sedimentation, and decomposition rates. Despite the high concentrations of copepod carcasses in the water column, the rates of their accumulation in the traps proved to be extremely low, which could be due to intense turbulent mixing of the waters. The carcass sedimentation rate and the flow of swimmers (motile copepods) into the traps were significantly higher in waters subjected to weaker turbulent mixing. The obtained estimates of the sedimentation rate of copepod carcasses (0.012 to 0.39 d−1) were comparable in value with the rate of their microbial decomposition (0.13 and 0.05 d−1 in the bay and adjacent waters, respectively). This confirmed the hypothesis on microbial decomposition as one of the key controls of the fraction of live zooplankton organisms in zooplankton.

Funder

Russian state assignment

RFBR

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3