Experimental Modelling of Point-Absorber Wave Energy Converter Arrays: A Comprehensive Review, Identification of Research Gaps and Design of the WECfarm Setup

Author:

Vervaet TimothyORCID,Stratigaki Vasiliki,De Backer Brecht,Stockman KurtORCID,Vantorre Marc,Troch PeterORCID

Abstract

Commercial wave energy exploitation will be realised by placing multiple wave energy converters (WECs) in an array configuration. A point-absorber WEC consists of a floating or submerged body to capture wave energy from different wave directions. This point-absorber WEC acts as an efficient wave absorber that is also an efficient wave generator. Optimising the WEC array layout to obtain constructive interference within the WEC array is theoretically beneficial, whereas for wind farms, it is only important to avoid destructive interference within an array of wind turbines due to wake effects. Moreover, the WEC array layout should be optimised simultaneously with the applied control strategy. This article provides a literature review on the state of the art in physical modelling of point-absorber WEC arrays and the identification of research gaps. To cover the scientific gap of experimental data necessary for the validation of recently developed (nonlinear) numerical models for WEC arrays, Ghent University has introduced the “WECfarm” project. The identified research gaps are translated into design requirements for the “WECfarm” WEC array setup and test matrix. This article presents the design of the “WECfarm” experimental setup, consisting of an array of five generic heaving point-absorber WECs. The WECs are equipped with a permanent magnet synchronous motor (PMSM), addressing the need for WEC array tests with an accurate and actively controllable power take-off (PTO). The WEC array control and data acquisition are realised with a Speedgoat Performance real-time target machine, offering the possibility to implement advanced WEC array control strategies in the MATLAB-Simulink model. Wave basin testing includes long- and short-crested waves and extreme wave conditions, representing real sea conditions. Within the “WECfarm” project, two experimental campaigns were performed at the Aalborg University wave basin: (a) a testing of the first WEC in April 2021 and (b) a testing of a two-WEC array in February 2022. An experimental campaign with a five-WEC array is under preparation at the moment of writing.

Funder

Research Foundation - Flanders

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference71 articles.

1. Budal’s latching-controlled-buoy type wave-power plant;Falnes;Proceedings of the 5th European Wave Energy Conference,2003

2. Wave energy converters in array configurations—Influence of interaction effects on the power performance and fatigue of mooring lines

3. Theory for Absorption of Wave Power by a System of Interacting Bodies

4. Dynamics and Control of Ocean Wave Energy Converters;Xie,2013

5. A comparison of control strategies for wave energy converters

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3