Tip Clearance Effect on The Tip Leakage Vortex Evolution and Wake Instability of a Ducted Propeller

Author:

Zhang XidiORCID,Liu Zhihua,Cao LiushuaiORCID,Wan DechengORCID

Abstract

The occurrence of a tip leakage vortex (TLV) is a special phenomenon of ducted propellers, which has a significant influence on the propeller’s hydrodynamic performance and efficiency. The inception, evolution, and instability of the TLV under different tip clearance sizes have a direct impact on the cavitation and acoustic characteristics. A simulation was set up to calculate the open-water performance of a standard ducted propeller. The open-water characteristics (OWCs) were compared with the experimental data to verify the feasibility of the method. Furthermore, to capture the influence of tip clearance size on the vortex structure evolution and wake dynamics, the improved delayed detached eddy simulation (IDDES) method was adopted to simulate four groups of ducted propellers with different tip clearances. The results showed that with the increase in the gap-to-span ratio (GSR), KTD and η0 gradually decreased, while KQ and KTB increased, but a peak point existed. Moreover, the TLV became thicker, indicating damage to the energy recycling process. The fast Fourier transform (FFT) of several wake points showed pressure pulsations of the wake ranging from the blade-passing frequency to the shaft frequency, and the evolution process accelerated with the increase in the GSR. The power spectral density (PSD) analysis showed that the energy of the wake enhanced with the increase in the GSR. In particular, the vortex interactions could cause pulses in low-GSR conditions, which could intensify the excitation force of the propeller and also have a certain impact on the noise level.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3