Study of the Optimal Dosage of Celullose Ash as a Contribution Filler in Asphalt Mixtures Based on Its Adhesiveness under Moisture Conditions

Author:

Movilla-Quesada DianaORCID,Raposeiras Aitor C.,Lagos-Varas ManuelORCID,Muñoz-Cáceres OsvaldoORCID,Andrés-Valeri Valerio-CarlosORCID,Troncoso LoretoORCID

Abstract

Chile is the first Latin American country to begin an “ecological overdraft”, as established by the Global Footprint Network (GFN). This implies that the country’s ecological footprint has exceeded the global average bio-capacity. The consumption of natural aggregates for construction in Chile has grown by around 6.6% in the last year, with around 120 million tons being extracted. Given the above, it is important to seek alternatives that help to minimize the problem of resource scarcity, as well as the recovery of industrial by-products and/or waste. The Chilean forestry sector has also grown in recent years, generating approximately 4000 metric tons of waste in 2018, which was deposited in landfills or disposed of on forest roads. The present research is focused on the reuse and possible recovery of ash from the incineration of cellulose as a filler in bituminous mixtures. We analyze the adhesiveness of the filler/bitumen system in dry and wet states, based on the Cantabro wear loss test. The results obtained show that the limit of the relation between the volumetric concentration and critical concentration (Cv/Cs) is 1 for the addition of ash and that concentrations lower than or equal to this value present controlled losses, with 1.00 being the optimal (Cv/Cs) ratio that allows better behavior against the effect of water.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference42 articles.

1. Informe Mercado Automotor Chile,2018

2. Asphalt Pavements and the Environment;Kennepohl,2008

3. Annual Reporthttps://www.footprintnetwork.org/content/documents/GFN_AR_2014_final.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3