The Effect of Epoxy Resin on the Infiltration of Porous Metal Parts Formed through Laser Powder Bed Fusion

Author:

Chen Jibing1ORCID,Liu Yanfeng1,She Yong1,Yang Yang1,Du Xinyu1,Yang Junsheng1,Wu Yiping2

Affiliation:

1. School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China

2. School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Laser powder bed fusion (L-PBF) additive manufacturing technology can print multi-material parts with multiple functions/properties, and has great potential for working in harsh application environments. However, the metal blank formed by sintering metal powder material with binder added through L-PBF has an obvious porous structure and insufficient mechanical properties, and few studies have been conducted studying this. In this paper, epoxy resin was used to impregnate the blank of porous metal parts formed by L-PBF with iron-based powder material at a certain temperature, and a cross-linked curing reaction was carried out with three kinds of phenolic resin in different proportions under the action of a curing agent, so as to fill the pores and achieve the desired mechanical properties. The characteristic peaks of each group of epoxy resin were characterized using Fourier transform infrared spectroscopy (FT-IR) and H-nuclear magnetic resonance (1H-NMR) spectrums. The microstructure, decomposition temperature, and residue of four epoxy resin dispersion systems were analyzed with a scanning electron microscope (SEM), a thermal gravimetric analyzer (TGA), and derivative thermogravimetry (DTG). The results show that the density of the porous metal parts was obviously improved, the heat resistance temperature of the parts could reach 350 °C, and the tensile strength of the sample after EP2-1 impregnation was increased by 4–6 times after curing at 160 °C for 6 h. Therefore, the use of an epoxy resin dispersion system can increase the porosity of L-PBF porous metal parts, but can also significantly improve their mechanical properties, which can help them to meet the requirements of applications as model materials, biological materials, and functional materials to provide a feasible solution.

Funder

Science and Technology Project of the Science and Technology Department of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3