A Study of the Influence of Fin Parameters on Porous-Medium Approximation

Author:

Tong Junjie1,Li Shuming2,Wang Tingyu1,Wang Shuxiang1,Xu Hu1,Yan Shuiyu1

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Guangzhou Maritime University, Guangzhou 510700, China

2. School of Materials and Energy, Guangdong University of Technology, Guangzhou 511400, China

Abstract

The porous-medium approximation (PM) approach is extensively employed in large-quantity grid simulations of heat exchangers, providing a time-saving approach in engineering applications. To further investigate the influence of different geometries on the implementation of the PM approach, we reviewed existing experimental conditions and performed numerical simulations on both straight fins and serrated fins. Equivalent flow and heat-transfer factors were obtained from the actual model, and computational errors in flow and heat transfer were compared between the actual model and its PM model counterpart. This exploration involved parameters such as aspect ratio (a*), specific surface area (Asf), and porosity (γ) to evaluate the influence of various geometric structures on the PM approach. Whether in laminar or turbulent-flow regimes, when the aspect ratio a* of straight fins is 0.98, the flow error (δf) utilizing the PM approach exceeds 45%, while the error remains within 5% when a* is 0.05. Similarly, for serrated fins, the flow error peaks (δf  > 25%) at higher aspect ratios (a* = 0.61) with the PM method and reaches a minimum (δf  < 5%) at lower aspect ratios (a* = 0.19). Under the same Reynolds numbers (Re), employing the PM approach results in an increased heat-transfer error (δh)with rising porosity (γ) and decreasing specific surface area (Asf), both of which remained under 10% within the range of this study. At lower aspect ratios (a*), the fin structure becomes more compact, resulting in a larger specific surface area (Asf) and smaller porosity (γ). This promotes more uniform flow and heat transfer within the model, which is closer to the characteristics of PM. In summary, for straight fins at 0 < a* < 0.17 in the laminar regime (200 < Re < 1000) and in the turbulent regime (1200 < Re < 5000) and for serrated fins at 0 < a* < 0.28 in the laminar regime (400 < Re < 1000) or 0 < a* < 0.32, in the turbulent regime (2000 < Re < 5000), the flow and heat-transfer errors are less than 15%.

Funder

Research Ability Improvement Project of Key Construction Subjects in Guangdong Province

Basic and Applied Basic Research Fund Project of Guangdong Province

Young Talent Research Project of the Guangzhou Education Bureau College Research Project

First-class Curriculum Project of Guangzhou Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3