A Refined Wind Power Forecasting Method with High Temporal Resolution Based on Light Convolutional Neural Network Architecture

Author:

Zhang Fei12,Ren Xiaoying12,Liu Yongqian1ORCID

Affiliation:

1. School of New Energy, North China Electric Power University, Beijing 102206, China

2. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

With a large proportion of wind farms connected to the power grid, it brings more pressure on the stable operation of power systems in shorter time scales. Efficient and accurate scheduling, operation control and decision making require high time resolution power forecasting algorithms with higher accuracy and real-time performance. In this paper, we innovatively propose a high temporal resolution wind power forecasting method based on a light convolutional architecture—DC_LCNN. The method starts from the source data and novelly designs the dual-channel data input mode to provide different combinations of feature data for the model, thus improving the upper limit of the learning ability of the whole model. The dual-channel convolutional neural network (CNN) structure extracts different spatial and temporal constraints of the input features. The light global maximum pooling method replaces the flat operation combined with the fully connected (FC) forecasting method in the traditional CNN, extracts the most significant features of the global method, and directly performs data downscaling at the same time, which significantly improves the forecasting accuracy and efficiency of the model. In this paper, the experiments are carried out on the 1 s resolution data of the actual wind field, and the single-step forecasting task with 1 s ahead of time and the multi-step forecasting task with 1~10 s ahead of time are executed, respectively. Comparing the experimental results with the classical deep learning models in the current field, the proposed model shows absolute accuracy advantages on both forecasting tasks. This also shows that the light architecture design based on simple deep learning models is also a good solution in performing high time resolution wind power forecasting tasks.

Funder

National Key Research and Development Program of China

Inner Mongolia Autonomous Region Key R&D and the Achievement Transformation Program Project

Publisher

MDPI AG

Reference32 articles.

1. Wind power forecasting based on time series model using deep machine learning algorithms;Chandran;Mater. Today Proc.,2021

2. Short-term scheduling strategy for wind-based energy hub: A hybrid stochastic/IGDT approach;Dolatabadi;IEEE Trans. Sustain. Energy,2019

3. Very short-term spatial and temporal wind power forecasting: A deep learning approach;Hu;CSEE J. Power Energy Syst.,2020

4. One day ahead wind speed forecasting: A resampling-based approach;Zhao;Appl. Energy,2016

5. Combined Active and Reactive Power Control of Wind Farms based on Model Predictive Control;Zhao;IEEE Trans. Energy Convers.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3