Flow and Heat Transfer Characteristics of Superheater Tube of a Pulverized Coal-Fired Boiler Using Conjugate Heat Transfer Modeling

Author:

Radhakrishnan Kanmaniraja1ORCID,Park Jun Su1ORCID

Affiliation:

1. Department of Automotive Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea

Abstract

This study is a numerical study to predict the temperature of the heat exchange tubes inside the pulverized coal-fired boiler through the conjugate heat transfer analysis. Due to the aspect ratio and number of tubes inside the pulverized coal-fired boiler, actual tube modeling analysis has rarely been conducted. Most of the research has been conducted through the porous media method, resulting in limited information on the temperature distribution of each tube. However, for the development of a digital twin model for improving the performance of the boiler and reducing maintenance costs, information on the local temperature of the tubes is required. In this study, all the tubes inside the boiler were modeled, and conjugate heat transfer analysis was performed to confirm the local temperature distribution. For this purpose, the analysis was conducted using Fluent 2020 r2, and the analysis model was constructed using more than 300 million structured grids. The calculation was performed considering conjugate heat transfer in the pulverized coal-fired boiler, heat exchange by steam inside the tubes, and conductive heat transfer of the tubes. As a result, it was confirmed that there is a significant deviation in the local temperature for each tube position. Furthermore, the maximum temperature of the PrSH tube ranges widely, between 492 and 532 degrees, depending on the tube’s position. It was observed that the point of the highest temperature inside the tubes also varies for each tube due to the flow of external combustion gas. Based on these results, it is expected that strategic approaches to boiler design and maintenance can be achieved. Furthermore, it is anticipated to contribute to the high efficiency of power facilities by being utilized as basic data for the development of a digital twin model for the boiler.

Funder

Korea National University of Transportation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3