Design of Sinusoidal Leading Edge for Low-Speed Axial Fans Operating under Inflow Distortion

Author:

Tieghi Lorenzo1ORCID,Delibra Giovanni1ORCID,Van der Spuy Johan2ORCID,Corsini Alessandro1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00182 Rome, Italy

2. Department of Mechanical and Mechatronic Engineering, Stellenbosh University, Stellenbosch Central, Stellenbosh 7599, South Africa

Abstract

Axial fans may be equipped with passive flow control devices to enhance rotor efficiency or minimize noise emissions. In this regard, blade designs influenced by biomimicry, such as rotors with sinusoidal leading edges (LEs), have gained popularity in recent years. However, their design is predominantly driven by a trial-and-error approach, with limited systematic studies on the influence of rotor performance. Furthermore, their effectiveness is typically evaluated under controlled conditions that may significantly differ from operations in real installation layouts. In this work, a systematic review of the design process for sinusoidal LE axial fan rotors is provided, aiming to summarize previous design experiences. Then, a modified sinusoidal LE is designed and fitted to a 7.3 m low-speed axial fan for air-cooled condensers (ACCs). These fans operate at environmental conditions, providing a quasi-zero static pressure rise, often with inflow non-uniformities. A series of RANS computations were run to simulate the performance of the baseline fan and that of the sinusoidal leading edge, considering a real installation setup at Stellenbosh University, where the ACC is constrained between buildings and has a channel running on the ground below the fan inlet. The aim is to explore the nonbalanced inflow condition effects in both rotor geometries and to test the effect of the installation layout on fan performance. The results show that the modification to the rotor allows for a more even distribution of flow in the blade-to-blade passages with respect to the baseline geometry.

Publisher

MDPI AG

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3