Construction of a Small-Sized Simplified Chemical Kinetics Model for the Simulation of n-Propylcyclohexane Combustion Properties

Author:

Saraee Hossein S.1,Hughes Kevin J.1ORCID,Pourkashanian Mohamed1

Affiliation:

1. Energy 2050, Department of Mechanical Engineering, The University of Sheffield, Sheffield S3 7RD, UK

Abstract

The development of a compact mechanism has made a great contribution to work on the combustion of hydrocarbon species and facilitates the investigations on chemical kinetics and computational fluid dynamics (CFD) studies. N-propylcyclohexane (NPCH) is one of the important components for jet, diesel, and gasoline fuels which needs a reliable compact reaction kinetics mechanism. This study aims to investigate the construction of a well-validated mechanism for NPCH with a simplified chemical kinetics model that delivers a good prediction ability for the key combustion parameters in a wide range of conditions (temperatures, pressures, and equivalence rates). The NPCH reaction kinetic mechanism was constructed with the aid of a coupling process, simplification process, rate modification, and a combination of standard reduction methods. The model includes a simplified sub-mechanism with 16 species and 58 reactions and a semi-detailed core mechanism with 56 species and 390 reactions. Two key parameters including ignition delay time and laminar flame speed are simulated by the use of ANSYS Chemkin-Pro. The simulation results for these parameters are validated against the available data in the literature, and the results show a good agreement compared to the experimental data over a wide range of conditions covering low to high temperatures at different pressures and equivalence ratios.

Funder

University of Sheffield Institutional Open Access Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3