Heat Transfer through Double-Chamber Glass Unit with Low-Emission Coating

Author:

Koshlak Hanna1ORCID,Basok Borys2,Davydenko Borys2

Affiliation:

1. Department of Sanitary Engineering, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego, 7, 25-314 Kielce, Poland

2. Department of Thermophysical Basics of Energy-Saving Technologies, Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine, 2a, Marii Kapnist (Zhelyabova) Str., 03057 Kyiv, Ukraine

Abstract

The numerical modeling of radiation and convective heat transfer through a double-chamber glass unit was carried out to substantiate the increase in the heat transfer resistance of this unit via the application of low-emission coatings to glass surfaces. In the space between the panes of a window without low-emission coatings, the amount of heat transferred via radiation exceeds the amount of heat transferred via thermal conductivity and convection. The question of the effect of low-emissivity coatings on reducing heat loss through a window has not yet been sufficiently studied. This problem is also not sufficiently reflected in the literature. In this regard, this paper presents the results of numerical simulation aimed at studying the effect of low-emissivity coatings on heat transfer through a double-chamber glass unit. Simulation is carried out by numerically solving a system of equations of fluid dynamics and energy for the air gap and glass. Boundary conditions of the fourth kind are set on the internal surfaces of the chambers, taking into account the radiation and conduction components of the total heat flux emanating from the glass. The results of modeling heat transfer through a glass unit with ordinary glass show that about 60% of the heat is transferred by radiation. Therefore, an effective measure to reduce heat loss through windows is to reduce the radiation component of the total heat flux by applying a low-emissivity coating to the internal surfaces of the glass unit. This allows for the reduction of the overall heat flux (and, accordingly, heat loss to the environment) by 20–34%, depending on the number of glass surfaces with such a coating.

Funder

The National Research Foundation of Ukraine

Publisher

MDPI AG

Reference23 articles.

1. Thermal transmittance of multiple glazing: Computational fluid dynamics prediction;Gan;Appl. Therm. Eng.,2001

2. Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings;Han;Appl. Energy,2010

3. Flow and heat transfer in double, triple and quadruple pane windows;Karabay;Energy Build.,2015

4. Transient numerical simulation of multiple pane windows filling with radiating gas;Nia;Int. Commun. Heat Mass Transf.,2019

5. Numerical Investigation of the Effects of Window Height and Gas Thickness on Heat Transfer and Gas Flow in Double Pane Windows;Energy Environ. Storage,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3