Strategies for Improving the Resiliency of Distribution Networks in Electric Power Systems during Typhoon and Water-Logging Disasters

Author:

Ma Nan1,Xu Ziwen2,Wang Yijun1,Liu Guowei1,Xin Lisheng1,Liu Dafu2,Liu Ziyu2,Shi Jiaju2,Chen Chen2ORCID

Affiliation:

1. Shenzhen Power Supply Co., Ltd., Shenzhen 518020, China

2. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Coastal cities often face typhoons and urban water logs, which can cause power outages and significant economic losses. Therefore, it is necessary to study the impact of these disasters on urban distribution networks and improve their flexibility. This paper presents a method for predicting power-grid failure rates in typhoons and water logs and suggests a strategy for improving network elasticity after the disaster. It is crucial for the operation and maintenance of power distribution systems during typhoon and water-logging disasters. By mapping the wind speed and water depth at the corresponding positions in the evolution of wind and water logging disasters to the vulnerability curve, the failure probability of the corresponding nodes is obtained, the fault scenario is generated randomly, and the proposed dynamic reconstruction method, which can react in real-time to the damage the distribution system received, has been tested on a modified 33-node and a 118-node distribution network, with 3 and 11 distribution generators loaded, respectively. The results proved that this method can effectively improve the resiliency of the distribution network after a disaster compared with the traditional static reconstruction method, especially in the case of long-lasting wind and flood disasters that have complex and significant impacts on the distribution system, with about 26% load supply for the 33-node system and nearly 95% for the 118-node system.

Funder

Science and Technology Project of China Southern Power Grid Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3