An Experimental Study on the Effectiveness of the Backward-Facing Step Technique on Small-Scale Horizontal-Axis Wind Turbine Rotor Blades

Author:

Morina Riad1ORCID,Akansu Yahya Erkan2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Prishtina “Hasan Prishtina”, 10000 Prishtina, Kosovo

2. Faculty of Mechanical Engineering, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey

Abstract

The aim of this research work was to explore how modifying the design of small-scale HAWT rotor blades through the backward-facing step technique affects their efficiency under varying wind speeds. The study involved altering step parameters such as location, length, and depth to create four distinct stepped blade shapes and enhance the aerodynamic performance of a rotor with a diameter of 280 mm. A specific blade profile, NREL S822, was selected to meet both aerodynamic and structural criteria. The rotor models were examined at a Reynolds number of 4.7 × 104 for wind speeds between 8.5 and 15.5 m/s and tip-speed ratios between 2 and 5. The experimental results indicated that for certain geometric step parameter values, the efficiency of the rotor model (B3) increased by approximately 47% compared to the base model (B1), particularly for tip-speed ratios lower than around 3.2. However, beyond this point, the rotor efficiency dropped significantly, reaching approximately 60% in one case. Additionally, a hybrid rotor model (B6) was generated by combining the shape of the rotor model (B4) with the most efficient rotor model from the literature, generated using the leading-edge wavy shape technique. This hybrid rotor model enhanced rotor efficiency for specific values of tip-speed ratio and also ensured its smoother operation. Overall, the rotor model (B2), distinguished by smaller step parameter values and a shift as well as broadening of the power coefficient curve towards lower tip-speed ratio values, exhibited a higher peak power coefficient, approximately 1.4% greater than the base rotor (B1). This increase occurred at a lower tip-speed ratio, allowing the rotor to operate with higher efficiency across a broader range of tip-speed ratios.

Publisher

MDPI AG

Reference35 articles.

1. Corke, T. (2018). Wind Energy Design, CRC Press.

2. Hau, E. (2013). Wind Turbines: Fundamentals, Technologies, Application, Economics, Springer Science & Business Media.

3. Nelson, V., and Starcher, K. (2018). Wind Energy: Renewable Energy and the Environment, CRC Press.

4. (2023, December 01). IEA Net Zero Emissions Scenario 2050. Available online: https://www.iea.org/reports/net-zero-by-2050.

5. Low Reynolds Number Airfoils for Small Horizontal Axis Wind Turbines;Selig;Wind. Eng.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3