Regional Stem Volume Mapping: A Feasibility Assessment of Scaling Tree-Level Estimates

Author:

Malambo Lonesome1ORCID,Popescu Sorin C.1,Rakestraw Jim2,Ku Nian-Wei1,Owoola Tunde A.2

Affiliation:

1. Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA

2. International Paper, Memphis, TN 38197, USA

Abstract

Spatially detailed monitoring of forest resources is important for sustainable management but limited by a lack of field measurements. The increasing availability of multisource datasets offers the potential to characterize forest attributes at finer resolutions with regional coverage. This study aimed to assess the potential of mapping stem volume at a 30 m scale in eastern Texas using multisource datasets: airborne lidar, Landsat and LANDFIRE (Landscape Fire and Resource Management Planning Tools Project) datasets. Gradient-boosted trees regression models relating total volume, estimated from airborne lidar measurements and allometric equations, and multitemporal Landsat and LANDFIRE predictors were developed and evaluated. The fitted models showed moderate to high correlation (R2 = 0.52–0.81) with reference stem volume estimates, with higher correlation in pine forests (R2 = 0.70–0.81) than mixed forests (R2 = 0.52–0.67). The models were also precise, with relative percent mean absolute errors (pMAE) of 13.8–21.2%. The estimated volumes also consistently agreed with volumes estimated in independent sites (R2 = 0.51, pMAE = 34.7%) and with US Forest Service Forest Inventory Analysis county-level volume estimates (R2 = 0.93, pBias = −10.3%, pMAE = 11.7%). This study shows the potential of developing regional stem volume products using airborne lidar and multisource datasets, supporting forest productivity and carbon modeling at spatially detailed scales.

Funder

International Paper Research Grants – Forest Sustainability grant and by funding from the NASA ICESat-2 Science Team, Studies with ICESat-2

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3