Mass Cytometric Analysis of Early-Stage Mycosis Fungoides

Author:

Guo Nannan,Jia Li,Out-Luiting Coby,Miranda Noel F. C. C. de,Willemze Rein,Koning Frits,Vermeer MaartenORCID,Quint Koen

Abstract

Mycosis fungoides (MF) is the most common subtype of cutaneous T-cell lymphoma. Early-stage disease is characterized by superficial infiltrates of small- to medium-sized atypical epidermotropic T lymphocytes that are clonal related. Nevertheless, the percentage of atypical T cells is low with many admixed reactive immune cells. Despite earlier studies, the composition and spatial characteristics of the cutaneous lymphocytic infiltrate has been incompletely characterized. Here, we applied mass cytometry to profile the immune system in skin biopsies of patients with early-stage MF and in normal skin from healthy individuals. Single-cell suspensions were prepared and labeled with a 43-antibody panel, and data were acquired on a Helios mass cytometer. Unbiased hierarchical clustering of the data identified the major immune lineages and heterogeneity therein. This revealed patient-unique cell clusters in both the CD4+ and myeloid cell compartments but also phenotypically distinct cell clusters that were shared by most patients. To characterize the immune compartment in the tissue context, we developed a 36-antibody panel and performed imaging mass cytometry on MF skin tissue. This visualized the structure of MF skin and the distribution of CD4+ T cells, regulatory T cells, CD8+ T cells, malignant T cells, and various myeloid cell subsets. We observed clusters of CD4+ T cells and multiple types of dendritic cells (DCs) identified through differential expression of CD11c, CD1a, and CD1c in the dermis. These results indicated substantial heterogeneity in the composition of the local immune infiltrate but suggest a prominent role for clustered CD4–DC interactions in disease pathogenesis. Probably, the local inhibition of such interactions may constitute an efficient treatment modality.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3