Impaired Glucocorticoid Receptor Signaling Aggravates Lung Injury after Hemorrhagic Shock

Author:

Preuss Jonathan M.,Burret Ute,Gröger Michael,Kress Sandra,Scheuerle Angelika,Möller Peter,Tuckermann Jan P.,Wepler Martin,Vettorazzi SabineORCID

Abstract

We previously showed that attenuated lung injury after hemorrhagic shock (HS) coincided with enhanced levels of the glucocorticoid (GC) receptor (GR) in lung tissue of swine. Here, we investigated the effects of impaired GR signaling on the lung during resuscitated HS using a dysfunctional GR mouse model (GRdim/dim). In a mouse intensive care unit, HS led to impaired lung mechanics and aggravated lung inflammation in GRdim/dim mice compared to wildtype mice (GR+/+). After HS, high levels of the pro-inflammatory and pro-apoptotic transcription factor STAT1/pSTAT1 were found in lung samples from GRdim/dim mice. Lungs of GRdim/dim mice revealed apoptosis, most likely as consequence of reduced expression of the lung-protective Angpt1 compared to GR+/+ after HS. RNA-sequencing revealed increased expression of pro-apoptotic and cytokine-signaling associated genes in lung tissue of GRdim/dim mice. Furthermore, high levels of pro-inflammatory cytokines and iNOS were found in lungs of GRdim/dim mice. Our results indicate impaired repression of STAT1/pSTAT1 due to dysfunctional GR signaling in GRdim/dim mice, which leads to increased inflammation and apoptosis in the lungs. These data highlight the crucial role of functional GR signaling to attenuate HS-induced lung damage.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3