The Effects of Mechanical Loading Variations on the Hypertrophic, Anti-Apoptotic, and Anti-Inflammatory Responses of Differentiated Cardiomyocyte-like H9C2 Cells

Author:

Zevolis Evangelos,Philippou AnastassiosORCID,Moustogiannis AthanasiosORCID,Chatzigeorgiou Antonios,Koutsilieris Michael

Abstract

Cardiomyocytes possess the ability to respond to mechanical stimuli by adapting their biological functions. This study investigated cellular and molecular events in cardiomyocyte-like H9C2 cells during differentiation as well as the signalling and gene expression responses of the differentiated cells under various mechanical stretching protocols in vitro. Immunofluorescence was used to monitor MyHC expression and structural changes during cardiomyoblast differentiation. Moreover, alterations in the expression of cardiac-specific markers, cell cycle regulatory factors, MRFs, hypertrophic, apoptotic, atrophy and inflammatory factors, as well as the activation of major intracellular signalling pathways were evaluated during differentiation and under mechanical stretching of the differentiated H9C2 cells. Compared to undifferentiated cells, advanced-differentiation cardiomyoblasts exhibited increased expression of cardiac-specific markers, MyHC, MRFs, and IGF-1 isoforms. Moreover, differentiated cells that underwent a low strain/frequency mechanical loading protocol of intermediate duration showed enhanced expression of MRFs and hypertrophic factors, along with a decreased expression of apoptotic, atrophy, and inflammatory factors compared to both high-strain/frequency loading protocols and to unloaded cells. These findings suggest that altering the strain and frequency of mechanical loading applied on differentiated H9C2 cardiomyoblasts can regulate their anabolic/survival program, with a low-strain/frequency stretching being, overall, most effective at inducing beneficial responses.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3