Abstract
In view of the proven link between adult hippocampal neurogenesis (AHN) and learning and memory impairment, we generated a straightforward adult neurogenesis in vitro model to recapitulate DNA methylation marks in the context of Alzheimer’s disease (AD). Neural progenitor cells (NPCs) were differentiated for 29 days and Aβ peptide 1–42 was added. mRNA expression of Neuronal Differentiation 1 (NEUROD1), Neural Cell Adhesion Molecule 1 (NCAM1), Tubulin Beta 3 Class III (TUBB3), RNA Binding Fox-1 Homolog 3 (RBFOX3), Calbindin 1 (CALB1), and Glial Fibrillary Acidic Protein (GFAP) was determined by RT-qPCR to characterize the culture and framed within the multistep process of AHN. Hippocampal DNA methylation marks previously identified in Contactin-Associated Protein 1 (CNTNAP1), SEPT5-GP1BB Readthrough (SEPT5-GP1BB), T-Box Transcription Factor 5 (TBX5), and Nucleoredoxin (NXN) genes were profiled by bisulfite pyrosequencing or bisulfite cloning sequencing; mRNA expression was also measured. NXN outlined a peak of DNA methylation overlapping type 3 neuroblasts. Aβ-treated NPCs showed transient decreases of mRNA expression for SEPT5-GP1BB and NXN on day 9 or 19 and an increase in DNA methylation on day 29 for NXN. NXN and SEPT5-GP1BB may reflect alterations detected in the brain of AD human patients, broadening our understanding of this disease.
Funder
Instituto de Salud Carlos III
European Regional Development Fund (ERDF), European Union
Department of Industry of the Government of Navarra
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献