Nuclear Localization Sequence of FGF1 Is Not Required for Its Intracellular Anti-Apoptotic Activity in Differentiated Cells

Author:

Lampart Agata,Sluzalska Katarzyna DominikaORCID,Czyrek AleksandraORCID,Szerszen Aleksandra,Otlewski JacekORCID,Wiedlocha Antoni,Zakrzewska MalgorzataORCID

Abstract

Fibroblast growth factor 1 (FGF1) is considered primarily as a ligand for FGF surface receptors (FGFRs) through which it activates a number of cellular responses. In addition to its canonical mode of action, FGF1 can act intracellularly, before secretion or after internalization and translocation from the cell exterior. The role of FGF1 inside the cell is to provide additional protection against apoptosis and promote cell survival. The FGF1 protein contains a specific N-terminal nuclear localization sequence (NLS) that is essential for its efficient transport to the nucleus. Here, we investigated the role of this sequence in the anti-apoptotic response of FGF1. To this end, we produced recombinant FGF1 variants with mutated or deleted NLS and added them to apoptosis-induced cells in which FGFR1 was inactive, either as a result of chemical inhibition or kinase-dead mutation. After internalization, all FGF1 variants were able to protect the differentiated cells from serum starvation-induced apoptosis. To verify the results obtained for NLS mutants, we knocked down LRRC59, a protein that mediates the nuclear transport of FGF1. Upon LRRC59 silencing, we still observed a decrease in caspase 3/7 activity in cells treated exogenously with wild-type FGF1. In the next step, FGF1 variants with mutated or deleted NLS were expressed in U2OS cells, in which apoptosis was then induced by various factors (e.g., starvation, etoposide, staurosporine, anisomycin and actinomycin D). Experiments were performed in the presence of specific FGFR inhibitors to eliminate FGFR-induced signaling, potentially activated by FGF1 proteins released from damaged cells. Again, we found that the presence of NLS in FGF1 is not required for its anti-apoptotic activity. All NLS variants tested were able to act as wild type FGF1, increasing the cell viability and mitochondrial membrane potential and reducing the caspase 3/7 activity and PARP cleavage in cells undergoing apoptosis, both transiently and stably transfected. Our results indicate that the nuclear localization of FGF1 is not required for its intracellular anti-apoptotic activity in differentiated cells and suggest that the mechanism of the stress response differs according to the level of cell differentiation.

Funder

National Science Center

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3