Understanding Cell Lines, Patient-Derived Xenograft and Genetically Engineered Mouse Models Used to Study Cutaneous T-Cell Lymphoma

Author:

Gill Raman Preet Kaur,Gantchev Jennifer,Martínez Villarreal Amelia,Ramchatesingh Brandon,Netchiporouk Elena,Akilov Oleg E.ORCID,Ødum NielsORCID,Gniadecki RobertORCID,Koralov Sergei B.ORCID,Litvinov Ivan V.ORCID

Abstract

Cutaneous T cell lymphoma (CTCL) is a spectrum of lymphoproliferative disorders caused by the infiltration of malignant T cells into the skin. The most common variants of CTCL include mycosis fungoides (MF), Sézary syndrome (SS) and CD30+ Lymphoproliferative disorders (CD30+ LPDs). CD30+ LPDs include primary cutaneous anaplastic large cell lymphoma (pcALCL), lymphomatoid papulosis (LyP) and borderline CD30+ LPD. The frequency of MF, SS and CD30+ LPDs is ~40–50%, <5% and ~10–25%, respectively. Despite recent advances, CTCL remains challenging to diagnose. The mechanism of CTCL carcinogenesis still remains to be fully elucidated. Hence, experiments in patient-derived cell lines and xenografts/genetically engineered mouse models (GEMMs) are critical to advance our understanding of disease pathogenesis. To enable this, understanding the intricacies and limitations of each individual model system is highly important. Presently, 11 immortalized patient-derived cell lines and different xenograft/GEMMs are being used to study the pathogenesis of CTCL and evaluate the therapeutic efficacy of various treatment modalities prior to clinical trials. Gene expression studies, and the karyotyping analyses of cell lines demonstrated that the molecular profile of SeAx, Sez4, SZ4, H9 and Hut78 is consistent with SS origin; MyLa and HH resemble the molecular profile of advanced MF, while Mac2A and PB2B represent CD30+ LPDs. Molecular analysis of the other two frequently used Human T-Cell Lymphotropic Virus-1 (HTLV-1)+ cell lines, MJ and Hut102, were found to have characteristics of Adult T-cell Leukemia/Lymphoma (ATLL). Studies in mouse models demonstrated that xenograft tumors could be grown using MyLa, HH, H9, Hut78, PB2B and SZ4 cells in NSG (NOD Scid gamma mouse) mice, while several additional experimental GEMMs were established to study the pathogenesis, effect of drugs and inflammatory cytokines in CTCL. The current review summarizes cell lines and xenograft/GEMMs used to study and understand the etiology and heterogeneity of CTCL.

Funder

Canadian Institutes of Health Research

Fonds de la recherche du Québec – Santé

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3