Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints

Author:

Pérez-Guaita David,Quintás GuillermoORCID,Farhane Zeineb,Tauler Romá,Byrne Hugh J.ORCID

Abstract

Raman microspectroscopy is a label-free technique which is very suited for the investigation of pharmacokinetics of cellular uptake, mechanisms of interaction, and efficacies of drugs in vitro. However, the complexity of the spectra makes the identification of spectral patterns associated with the drug and subsequent cellular responses difficult. Indeed, multivariate methods that relate spectral features to the inoculation time do not normally take into account the kinetics involved, and important theoretical information which could assist in the elucidation of the relevant spectral signatures is excluded. Here, we propose the integration of kinetic equations in the modelling of drug uptake and subsequent cellular responses using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and tailored kinetic constraints, based on a system of ordinary differential equations. Advantages of and challenges to the methodology were evaluated using simulated Raman spectral data sets and real Raman spectra acquired from A549 and Calu-1 human lung cells inoculated with doxorubicin, in vitro. The results suggest a dependency of the outcome on the system of equations used, and the importance of the temporal resolution of the data set to enable the use of complex equations. Nevertheless, the use of tailored kinetic constraints during MCR-ALS allowed a more comprehensive modelling of the system, enabling the elucidation of not only the time-dependent concentration profiles and spectral features of the drug binding and cellular responses, but also an accurate computation of the kinetic constants.

Funder

European Commission

Ramón y Cajal (RYC) Contract Aids

Science Foundation Ireland

Publisher

MDPI AG

Subject

General Medicine

Reference55 articles.

1. Analytical Ancestry: “Firsts” in Fluorescent Labeling of Nucleosides, Nucleotides, and Nucleic Acids

2. Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells

3. Chemical labeling strategies for cell biology

4. High-Content Analysis in Preclinical Drug Discovery

5. High Content Screening Market by Product (Cell Imaging & Analysis System, Flow Cytometry, Consumable, Software, Service) Application (Primary & Secondary Screening, Toxicity Studies, Target Identification & Validation), End User-Global Forecast to 2022;Marketsand,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3