Improving Microalgal Biomass Productivity Using Weather-Forecast-Informed Operations

Author:

Gao SongORCID,Yan Hongxiang,Beirne Nathan,Wigmosta Mark,Huesemann Michael

Abstract

The operation of microalgal cultivation systems, such as culture dilution associated with harvests, affects biomass productivity. However, the constantly changing incident light and ambient temperature in the outdoor environment make it difficult to determine the operational parameters that result in optimal biomass growth. To address this problem, we present a pond operation optimization tool that predicts biomass growth based on future weather conditions to identify the optimal dilution rate that maximizes biomass productivity. The concept was tested by comparing the biomass productivities of three dilution scenarios: standard batch cultivation (no dilution), fixed-rate dilution (harvest 60% of the culture every three days), and weather-forecast-informed dilution. In the weather-forecast-informed case, the culture was diluted daily, and the dilution ratio was optimized by the operation optimization tool according to the future 24 h weather condition. The results show that the weather-forecast-informed dilution improved the biomass productivity by 47% over the standard batch cultivation and 20% over the fixed-rate dilution case. These results demonstrate that the pond operation optimization tool could help pond operators to make decisions that maximize biomass growth in the field under ever-changing weather conditions.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

General Medicine

Reference24 articles.

1. Global Warming of 1.5 °C, Intergovermental Panel on Climate Changehttps://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf

2. A review on prospective production of biofuel from microalgae

3. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review

4. Growth kinetic models for microalgae cultivation: A review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3