TRPM2 Promotes Atherosclerotic Progression in a Mouse Model of Atherosclerosis

Author:

Zhang Yunting,Ying Fan,Tian XiaoyuORCID,Lei Zhenchuan,Li Xiao,Lo Chun-Yin,Li Jingxuan,Jiang LiwenORCID,Yao XiaoqiangORCID

Abstract

Atherosclerosis is a chronic inflammatory arterial disease characterized by build-up of atheromatous plaque, which narrows the lumen of arteries. Hypercholesterolemia and excessive oxidative stress in arterial walls are among the main causative factors of atherosclerosis. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress. However, the role of TRPM2 in atherosclerosis in animal models is not well studied. In the present study, with the use of adeno-associated virus (AAV)-PCSK9 and TRPM2 knockout (TRPM2−/−) mice, we determined the role of TRPM2 in hypercholesterolemia-induced atherosclerosis. Our results demonstrated that TRPM2 knockout reduced atherosclerotic plaque area in analysis of En face Oil Red O staining of both whole aortas and aortic-root thin sections. Furthermore, TRPM2 knockout reduced the expression of CD68, α-SMA, and PCNA in the plaque region, suggesting a role of TRPM2 in promoting macrophage infiltration and smooth-muscle cell migration into the lesion area. Moreover, TRPM2 knockout reduced the expression of ICAM-1, MCP-1, and TNFα and decreased the ROS level in the plaque region, suggesting a role of TRPM2 in enhancing monocyte adhesion and promoting vascular inflammation. In bone-marrow-derived macrophages and primary cultured arterial endothelial cells, TRPM2 knockout reduced the production of inflammatory cytokines/factors and decreased ROS production. In addition, a TRPM2 antagonist N-(p-amylcinnamoyl) anthranilic acid (ACA) was able to inhibit atherosclerotic development in an ApoE−/− mouse model of atherosclerosis. Taken together, the findings of our study demonstrated that TRPM2 contributes to the progression of hypercholesterolemia-induced atherosclerosis. Mechanistically, TRPM2 channels may provide an essential link that can connect ROS to Ca2+ and inflammation, consequently promoting atherosclerotic progression.

Funder

Hong Kong Health and Medical Research Fund

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3