A Journey through Time on the Discovery of Cell Cycle Regulation

Author:

Uzbekov RustemORCID,Prigent ClaudeORCID

Abstract

All living organisms on Earth are made up of cells, which are the functional unit of life. Eukaryotic organisms can consist of a single cell (unicellular) or a group of either identical or different cells (multicellular). Biologists have always been fascinated by how a single cell, such as an egg, can give rise to an entire organism, such as the human body, composed of billions of cells, including hundreds of different cell types. This is made possible by cell division, whereby a single cell divides to form two cells. During a symmetric cell division, a mother cell produces two daughter cells, while an asymmetric cell division results in a mother and a daughter cell that have different fates (different morphologies, cellular compositions, replicative potentials, and/or capacities to differentiate). In biology, the cell cycle refers to the sequence of events that a cell must go through in order to divide. These events, which always occur in the same order, define the different stages of the cell cycle: G1, S, G2, and M. What is fascinating about the cell cycle is its universality, and the main reason for this is that the genetic information of the cell is encoded by exactly the same molecular entity with exactly the same structure: the DNA double helix. Since both daughter cells always inherit their genetic information from their parent cell, the underlying fundamentals of the cell cycle—DNA replication and chromosome segregation—are shared by all organisms. This review goes back in time to provide a historical summary of the main discoveries that led to the current understanding of how cells divide and how cell division is regulated to remain highly reproducible.

Publisher

MDPI AG

Subject

General Medicine

Reference64 articles.

1. Micrographia, or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses, with Observations and Inquiries Thereupon;Hooke,1665

2. Die Cellularpathologie in Ihrer Begründung auf Physiologische und Pathologische Gewebelehre;Virchow,1859

3. Zellsubstanz, Kern und Zelltheilung;Flemming,1882

4. Über Karyokinese und ihre Beziehungen zu den Befruchtungsvorgängen;Von Waldeyer-Hartz;Arch. Mikrosk. Anat. Entwickl.,1888

5. Autoradiograph Technique

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3