Spermatozoal Mitochondrial Dynamics Markers and Other Functionality-Related Signaling Molecules Exert Circadian-like Response to Repeated Stress of Whole Organism

Author:

Starovlah Isidora M.ORCID,Radovic Pletikosic Sava M.,Tomanic Tamara M.ORCID,Medar Marija L. J.ORCID,Kostic Tatjana S.ORCID,Andric Silvana A.ORCID

Abstract

In the search for the possible role of the mitochondrial dynamics markers in spermatozoa adaptation, an in vivo approach was designed to mimic situations in which human populations are exposed to 3 h of repeated psychological stress (the most common stress in human society) at different time points during the day (24 h). The hormones (stress hormone corticosterone and testosterone), the number and the functionality of spermatozoa (response to acrosome-reaction-inducer progesterone), as well as the transcriptional profiles of 22 mitochondrial dynamics and function markers and 22 signaling molecules regulating both mitochondrial dynamics and spermatozoa number and functionality were followed at three time points (ZT3, ZT11, and ZT23). The results show that repeated stress significantly decreased the number and functionality of spermatozoa at all time points. In the same samples, the transcriptional profiles of 91% (20/22) of mitochondrial dynamics and functionality markers and 86% (19/22) of signaling molecules were disturbed after repeated stress. It is important to point out that similar molecular changes in transcriptional profiles were observed at ZT3 and ZT23, but the opposite was observed at ZT11, suggesting the circadian nature of the adaptive response. The results of PCA analysis show the significant separation of repeated stress effects during the inactive/light and active/dark phases of the day, suggesting the circadian timing of molecular adaptations.

Funder

The Serbian Ministry of Education, Science and Technological Development

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress alters the transcriptional activity of Leydig cells dependently on the diurnal time;American Journal of Physiology-Cell Physiology;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3