The Effects of Organically Modified Lithium Magnesium Silicate on the Rheological Properties of Water-Based Drilling Fluids

Author:

Luo Taotao1,Li Jun1,Xu Jiangen1,Wang Jun1,Zhang Lianxi1,Yu Zeya1

Affiliation:

1. Institute of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

Abstract

To address the problem of insufficient temperature and salt resistance of existing polymer viscosity enhancers, we designed an organic–inorganic hybrid composite as a viscosity enhancer for water-based drilling fluids, named LAZ, and it was prepared by combining a water-soluble monomer and lithium magnesium silicate (LMS) using an intercalation polymerization method. The composite LAZ was characterized using Fourier transform infrared spectroscopy, transformed target X-ray diffractometry, scanning electron microscopy, and thermogravimetric analysis. The rheological properties of the composite LAZ were evaluated. The composite LAZ was used as a water-based drilling fluid viscosity enhancer, and the temperature and salt resistance of the drilling fluid were evaluated. The results showed that the composite LAZ presented a complex reticulation structure in an aqueous solution. This reticulation structure intertwined with each other exhibited viscosity-enhancing properties, which can enhance the suspension properties of water-based drilling fluids. The aqueous solution of the composite LAZ has shear dilution properties. As shear rate increases, shear stress becomes larger. The yield stress value of the aqueous solution increases as the composite LAZ’s concentration increases. The aqueous solution of the composite LAZ exhibits strong elastic characteristics with weak gel properties. The addition of the composite LAZ to 4% sodium bentonite-based slurry significantly increased the apparent viscosity and dynamic shear of the drilling fluid. The drilling fluids containing the composite LAZ had good temperature resistance at 150 °C and below. The rheological properties of brine drilling fluids containing the composite LAZ changed slightly before and after high-temperature aging at 150 °C.

Funder

Natural Science Foundation of Chongqing

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3