On the Flow of a Cement Suspension: The Effects of Nano-Silica and Fly Ash Particles

Author:

Tao Chengcheng1ORCID,Massoudi Mehrdad2ORCID

Affiliation:

1. School of Construction Management Technology, Purdue University, West Lafayette, IN 47907, USA

2. National Energy Technology Laboratory (NETL), U. S. Department of Energy, Pittsburgh, PA 15236, USA

Abstract

Additives such as nano-silica and fly ash are widely used in cement and concrete materials to improve the rheology of fresh cement and concrete and the performance of hardened materials and increase the sustainability of the cement and concrete industry by reducing the usage of Portland cement. Therefore, it is important to study the effect of these additives on the rheological behavior of fresh cement. In this paper, we study the pulsating Poiseuille flow of fresh cement in a horizontal pipe by considering two different additives and when they are combined (nano-silica, fly ash, combined nano-silica, and fly ash). To model the fresh cement suspension, we used a modified form of the power-law model to demonstrate the dependency of the cement viscosity on the shear rate and volume fraction of cement and the additive particles. The convection–diffusion equation was used to solve for the volume fraction. After solving the equations in the dimensionless forms, we conducted a parametric study to analyze the effects of nano-silica, fly ash, and combined nano-silica and fly ash additives on the velocity and volume fraction profiles of the cement suspension. According to the parametric study presented here, larger nano-silica content results in lower centerline velocity of the cement suspension and larger non-uniformity of the volume fraction. Compared to nano-silica, fly ash exhibits an opposite effect on the velocity. Larger fly ash content results in higher centerline velocity, while the effect of the fly ash on the volume fraction is not obvious. For cement suspension containing combined nano-silica and fly ash additives, nano-silica plays a dominant role in the flow behavior of the suspension. The findings of the study can help the design and operation of the pulsating flow of fresh cement mortars and concrete in the 3D printing industry.

Funder

Concrete Research Council

National Science Foundation (NSF) I-Corps

School of Construction Management Technology at Purdue University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3